

MODEL-DRIVEN GAME DEVELOPMENT:

2D PLATFORM GAME PROTOTYPING

Emanuel Montero Reyno and José Á. Carsí Cubel

Grupo de Ingeniería del Software y Sistemas de Información

Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia

Camí de Vera s/n, 46022, Valencia, España

E-mail: {emontero, pcarsi}@dsic.upv.es

KEYWORDS

Game Development Methodology, Game Design, Tools,

Model-Driven Development.

ABSTRACT

The increasing complexity of game development highlights

the need of intellectual and industrial tools to enhance

productivity in terms of quality, time and cost. In this paper

we propose to apply Model-Driven Development (MDD)

methodology to game development, rising the level of

abstraction towards game conceptual modelling. As an

example, we present a game design prototype tool to

prototype 2D platform games for PC, with automatic code

generation from UML models.

1. INTRODUCTION

In the last decades, industrial game development has grown

exponentially in complexity, highlighting the need of

development methodologies to enhance productivity. Game

development relies greatly on adhoc development or

waterfall methodology, although other software development

methodologies have been recently applied to game

development: Agile Methodologies, Component-Based

Development and Software Product Lines. Withouht leaving

aside these previous approaches, we propose to use Model-

Driven Development (MDD) methodology in order to rise

the level of abstraction of game development, enhancing

productivity and shifting efforts from game programming to

game conceptual specification, allowing the automatization

of the coding tasks in game development.

As an introductory application example of Model-Driven

Game Development (MDGD) we present a prototype tool to

prototype 2D platform games for PC. Prototyping and

playtesting has been previously highlighted (Henderson

2006; Fullerton et. al. 2004) as fundamental engines of game

design. Despite being a first approach to productivity

enhance of game prototyping, interesting results can be seen

working with a higher level of abstraction in game

development.

This paper is organized in the following sections: section 2

presents the state of the art in game development

methodologies. Section 3 describes the models and

transformations that support a prototype tool for MDGD.

Section 4 details the conclusions and future lines of research.

2. STATE OF THE ART

Game development is one of the industries with greater

expansion of the last decades. The complexity of games has

increased exponentially since its origins (Blow 2004). In the

mid 80s a game could be developed in 3 months by one

programmer who also did the design and art, from

conception to final implementation. In 2005 a game can be

developed by a team between 20 and 100 multidisciplinary

specialists, including programmers, game designers, artists,

writers, voice actors, musicians, etc. with a budget over 10

millions of dollars for 4 years of development. Despite the

increasing size of the development team and the economic

and temporal resources invested, there is a great need of

development methodologies to enhance game development

productivity.

Game development is a field typically characterized by

adhoc low-level development. In the latest years some effort

has been done to introduce development methodologies into

game development. The first attempt was to use Waterfall

Development to cope with the increasing technology

demands of game development. Teams scaled up requiring

extense game design documentation written in natural

language to keep the focus of develpment. But game design

documentation wasn’t easy to maintain, which caused

communication breakdown. Design changes were handled

directly at programming level, leading to a difficult

maintenance of games and low productivity.

Component-Based Development methodology has been

applied to game development (Folmer 2007) in order to

allow a greater reuse of recurrent functionality. The use of

game development-specific middleware doesn’t rise the level

of abstraction in development. Games remain programmed

with object-oriented languages, script languages and so on.

Middlewares are successful and widely extended in game

development, becoming an obligation for game development

methodologies.

Agile Methodologies have been applied to game

development (McGuire 2006; Miller 2008) to enhance

change management during development and iterativity in

game design, approaching as fast as possible to the core

gameplay for the client. Although iterativity enhances game

development, Agile Methodologies doesn’t rise the level of

abstraction in development, keeping the focus on game

programming.

In academic research, Software Product Lines have been

applied to game development (Furtado and Santos 2004)

using graphic domain-specific languages to represent

variations in action-adventure games. Individual games are

generated using code templates. The reuse of common

characteristics in games of the same genre can be exploited

considering this semi-automatic Software Product Line

development.

3. MODEL-DRIVEN GAME DEVELOPMENT

In order to cope with the increasing complexity of game

development, the level of abstraction have to be increased.

With this aim we propose to apply Model-Driven

Development (MDD) methodology to game development. As

an introductory example a prototype tool has been

implemented to prototype 2D platform games for PC from

UML models. 2D platform games are a game genre

characterized by a protagonist who moves and jumps into

platforms, collecting prizes and destroying enemies in

various ways. Classic 2D platform games include Super

Mario BROS, Sonic The Hedgehog and Bubble Bobble.

The prototype tool uses two Platform-Independent Models

(PIM) to define the structure and behaviour of games

avoiding development details of the underlying technology

platform. A Platform-Specific Model (PSM) describes the

mapping of game actions to the hardware control devices by

which the player interacts (joystick, keyboard, …). A model

transformation from the previous UML models generates the

code of the prototypes in C++ using a game development-

specific middleware, Haaf Game Engine, to provide basic

functionality through specialized libraries. Other

programming languages and middleware could have been

used as development technology platform. Finally, the

generated code can be manually completed and the 2D

platform game prototype can be playtested iteratively.

3.1. Structure Diagram

2D platform game structure can be specified using class

diagrams extended with stereotypes. Stereotypes are UML

extensions that allow the creation of model elements suited to

the problem domain, which in this case is 2D platform games

for PC. The PlayerCharacter stereotype describes a game

entity controlled by the player. The Enemy stereotype defines

a game entity controlled by the game system opposing the

main character of the player. The Entity stereotype describes

the other passive game entities such as prizes and platforms.

Each stereotype is abstractly represented by a coloured shape

in the 2D platform game prototype: the main player character

is rendered as a green circle, the enemies as red circles, the

prizes as yellow circles and the platforms as orange squares.

In the example Bubble Bobble prototype, the UML structure

diagram extended with stereotypes specifies all game entities

and its relationships. The game level is affected by gravity

(attraction towards the ground) and friction (resistence to

movement). The main game entities are the player character

Bub, the bubbles, the Benzo enemies, the prizes and the

platforms. The player character has a number of lives and a

score that increases destroying enemies or collecting prizes.

Bubbles can contain a trapped enemy inside.

Figure 1: Structure Diagram of Bubble Bobble

3.2. Behaviour Diagram

UML state transition diagrams can be used to specify the

basic behaviour of each 2D platform game entity. State

transitions are triggered by game events which change the

internal game entity state. The final game entity state

represents the destruction or death of the game entity.

In the Bubble Bobble example prototype the behaviour

diagram of the player character describes that Bub can be

alive either on the ground or in the air. In both cases he can

blow bubbles but he can only move and jump from the

ground. If Bub collides with a bubble, he will pop it. If Bub

collides with a prize he will gain its points. If Bub collides

with an enemy he will lose a life. Losing all his lives will

destroy Bub.

Figure 2: Behaviour Diagram of the Player Character of

Bubble Bobble

3.3. Control Diagram

Game control can be understood as a hardware device

configuration allowing the player to interact with the game.

Game control mappings specify which controls are

associated to each game action. Game actions are game

events triggered by the players. Figure 3 describes a

metamodel to capture control diagrams for 2D platform

games for PC.

Figure 3: Control Metamodel for 2D Platform Games

The control diagram is a Platform-Specific Model (PSM).

Two kinds of techology platforms can be distinguished in

game development: development technology and target

technology. Development technology platforms include

programming languages, SDKs, middleware and other

technology used in the construction of the game. Target

technology platforms include the hardware devices in which

the game will be played. In present days there is a great

variety of target technology platforms: PC, flatbed and

handheld consoles, arcades, mobile phones, etc.

Development technology aspects can be automated through

the use of Platform-Specific Models (PSM) such as the

control diagram.

4. CONCLUSIONS AND FUTURE WORK

Despite the efforts invested in the construction of a prototype

tool for 2D platform game prototyping it is fair to declare its

shortages and limitations. The UML models used to specify

2D platform games are closer to software engineers than to

game developers. It would be of great interest to develop a

conceptual model close to game developers terminology,

deriving through model transformations the structure and

behaviour models.

Figure 4: Bubble Bobble Prototype

Focusing on the productivity results, a week was invested to

manually implement the Bubble Bobble example game

prototype. Using the model-driven approach, another

prototype was automatically built in a day, with 93% of code

generation from the UML models. Model to code

transformations in MOFscript derive automatically most of

the game prototype code from the models, notably rising the

productivity of the development process. These automated

transformations assign each game element semantics,

explicitly embedding 2D platform game domain knowledge

and good practices in the code generation. In order to

informally validate these results, another game (Super Mario

Bros) was prototyped reusing Bubble Bobble models. 94% of

the game code was automatically generated. The model-

driven approach enhances productivity in game development

and reusability of the software artifacts. The programmer

only has to manually code aspects not specified in the models

(such as the artificial intelligence of the enemies).

Table 1: Automatic Code Generation of 2D Platform Game

Prototypes

Proto-

type

Structure

Code

Behaviour

Code
Total %

Bubble

Bobble

485 / 495

lines

232 / 274

lines
93%

Super

Mario

Bros

393 / 393

lines

184 / 215

lines
94%

As future work remains the application of Microsoft’s XNA

game specific middleware to model-driven game

development. The first step is to define a game specific

modelling language to precisely describe games using

concepts closer to game developers. The next step is to build

PSM models for the XNA development techonology

platform, and transformations between platform independent

and specific models. Finally, code will be generated to each

target technology platform: PC and XBOX 360.

REFERENCES

Blow, J. 2004. “Game Development: Harder Than You Think”. In

ACM Queue, 1 (10).

Folmer, E. 2007. “Component Based Game Development: A

Solution to Escalating Costs and Expanding Deadlines?”. In

CBSE.

Fullerton, T. and Swain, C. and Hoffman, S. 2004. “Game Design

Workshop: Designing, Prototyping, and Playtesting Games”.

CMP Books, 157.

Furtado, A. W. B. and Santos, A. L. M. 2006. “Using Domain-

Specific Modeling towards Computer Games Development

Industrialization”. In DSM Forum.

Henderson, J. 2006. “The Paper Chase: Saving Money via Paper

Prototyping”. In Gamasutra.

McGuire, R. 2006. “Paper Burns: Game Design with Agile

Methodologies”. In Gamasutra.

Miller, P. 2008. “Top 10 Pitfalls Using Scrum Methodology for

Video Game Development”. In Gamasutra.

